
Find: (a) $\int \frac{x-3}{\sqrt{9 x^{2}+4}} d x$
(b) $\int \frac{1+\cos \left(e^{-2 x}\right)}{e^{2 x}} d x$
(c) $\int \frac{x^{2}}{\sqrt{16-x^{6}}} d x$
(d) $\int \cot x \cdot \ln (\sin x) d x$

Ans:
(a) $\int \frac{x-3}{\sqrt{9 x^{2}+4}} d x=\frac{1}{3} \int \frac{x-3}{\sqrt{x^{2}+\left(\frac{2}{3}\right)^{2}}} d x=\frac{1}{3}\left[\int \frac{x}{\sqrt{x^{2}+\left(\frac{2}{3}\right)^{2}}} d x-3 \int \frac{d x}{\left.\sqrt{x^{2}+\left(\frac{2}{3}\right.}\right)}\right]$

$$
=\frac{1}{3}\left\{\frac{1}{2} \cdot 2 x\left(x^{2}+\left(\frac{2}{3}\right)^{2}\right)^{\frac{-1}{2}} d x\right)-\left(\int^{5} \frac{d x}{\sqrt{x^{2}+\left(\frac{2}{3}\right)^{2}}}\right) \rightarrow \sinh ^{-1}\left(\frac{3 x}{2}\right.
$$

Qut $u=x^{2}+\left(\frac{2}{3}\right)^{2} \Rightarrow d u=2 x d x$

$$
\begin{aligned}
& \text { Then, } \\
& \quad J=\int \frac{1}{2} \cdot u^{-\frac{1}{2}} d u=\frac{1}{3} \cdot 2 \cdot u^{1 / 2}=\sqrt{u} \text {. Then } \\
& \int \frac{x-3}{\sqrt{9 x^{2}+4}} d x=\frac{1}{3} \cdot \sqrt{x^{2}+\frac{4}{9}}-\sinh ^{-1}\left(\frac{3 x}{2}\right)+0
\end{aligned}
$$

(b)

$$
\begin{aligned}
I & =\int \frac{1+\cos \left(e^{-2 x}\right)}{e^{2 x}} d x=\int \frac{d x}{e^{x}}+\int \frac{\cos \left(e^{-2 x}\right)}{e^{2 x}} d x \\
& =\int e^{-2 x} d x+\int e^{-2 x} \cdot \cos \left(2^{-2}\right) d x \rightarrow \begin{array}{l}
\text { Rut } \\
\text { Ten }
\end{array} \\
& =\frac{-1}{2} e^{-2 x}-\frac{1}{2} \sin \left(e^{-x}\right) \Rightarrow d u=-2 e^{-2 x} d x \\
& =\frac{-1}{2} \sin \left(e ^ { - 2 x } \operatorname { c o s } \left(e^{-2 x} d x=\frac{-1}{2} \int \cos (u) d u\right.\right. \\
& \sin \left(e^{-2 x}\right)
\end{aligned}
$$

(C)

$$
K=\int \frac{x^{2}}{\sqrt{16-x^{6}}} \cdot d x=\frac{1}{3} \int \frac{3 x^{2}}{\sqrt{16-\left(x^{3}\right)^{2}}} d x
$$

Oit: $v^{3}=u \Rightarrow 3 x^{2} d x=d u$. Then

$$
K=\frac{1}{3} \int \frac{d u}{\sqrt{(4)^{2}-u^{2}}}=\frac{1}{3} \sin ^{-1}\left(\frac{u}{4}\right)+C=\frac{1}{3} \sin ^{-1}\left(\frac{x^{3}}{4}\right)+C
$$

6'1

$$
J=\int \cot x \cdot \ln (\sin x) d x=\int \frac{\cos x}{\sin x} \ln (\sin x) d x
$$

put $u=\ln (\sin x) \Rightarrow d u=\frac{\cos x}{\sin x} d x$. Then

$$
J=\int u d u=\frac{1}{2} u^{2}+C \Rightarrow J=\frac{1}{2}[\ln (\sin x)]^{2}+C
$$

Find: (a) $x=\int \frac{d x}{x^{2}-4 x+7}$
(b) $J=\int \frac{d x}{2 x^{2}-x-3}$
(c) $K=\int \frac{d x}{(x-1) \sqrt{x^{2}-2 x-2}}$

Ans:
(a) $x^{2}-4 x+7=x^{2}-4 x+4+7-4=(x-2)^{2}+(\sqrt{3})^{2}$, Then

$$
I=\int \frac{d x}{(x-2)^{2}+(\sqrt{3})^{2}}=\frac{1}{\sqrt{3} \tan ^{-1}\left(\frac{x-2}{\sqrt{3}}\right)+C}
$$

(b) using Partial fraction technique, Then

$$
\begin{aligned}
& J= \int \frac{1}{(2 x-3)(x+1)} d x=\int\left[\frac{A}{(2 x-3)}+\frac{B}{(x+1)}\right] d x \\
& A(x+1)+B(2 x-3)=1 \Rightarrow \text { Put: } x=-1 \Rightarrow-5 B=1 \Rightarrow 1 \\
& x=\frac{3}{2} \Rightarrow \frac{5}{2} A \Rightarrow=\frac{-1}{5} \\
& J=\left.\frac{1}{5} \int \frac{2}{(2 x-3)} d x-\frac{1}{5} \int \frac{d x}{x+1}=\frac{1}{5} \ln \left[\frac{2 x-3}{x+1}\right]+C\right\}
\end{aligned}
$$

(C)

$$
\begin{aligned}
K & =\int \frac{d x}{(x-1) \cdot \sqrt{x^{2}-2 x+1-3}}=\int \frac{d}{(x-1) \cdot \sqrt{(x-1)^{2}-(\sqrt{3})^{2}}}=\int \frac{d u}{u \cdot \sqrt{u^{2}-(\sqrt{3})^{2}}} \\
& =\frac{1}{\sqrt{3} \sec ^{-1}\left(\frac{(x-1)}{\sqrt{3}}\right)+C}
\end{aligned}
$$

Find:
(a) $\int \frac{2 x-1}{\sqrt{x^{2}+2 x}} d x$
(b) $\int: \sqrt{x-1} d x$
(c) $\int \frac{d x}{3 \sqrt{x}+1}$.
(d) $\int \frac{d x}{\sqrt{x+2}-\sqrt{x}}$.

Ans:
(a)

$$
\begin{aligned}
I & =\int \frac{1}{\sqrt{x^{2}+2}} \cdot x=\int \frac{2 x-1}{\sqrt{x^{2}+2 x+1-1}} d x \\
& =\int \frac{2 x \cdot d x}{\sqrt{(x+1)^{2}-1}}-\int \frac{d x}{\sqrt{(x+1)^{2}-(1)^{2}}} \\
& =\int \frac{2 x+2-2}{\sqrt{(x+1)^{2}-1}} d x-\cosh ^{-1}(x+1) \\
& =\int \frac{(2 x+2) d x}{\sqrt{(x+1)^{2}-1}}-2 \int \frac{d x}{\sqrt{(x+1)^{2}-1}}-\cosh ^{-1}(x+1) \\
& =\int \cosh ^{-1}(x+1)+C
\end{aligned}
$$

(b) $I=\int x \sqrt{x-1} d x$.

But $u^{2}=x-1 \Rightarrow 2 u d u=d x$. Then

$$
\begin{aligned}
I & =\int\left(u^{2}+1\right) \cdot u \cdot 2 u d u=2 \int\left(u^{u}+u^{2}\right) d u=\frac{2}{5} u^{5}+\frac{2}{3} u^{2}+C \\
& =\frac{2}{5} \cdot \sqrt{(x-1)^{5}}+\frac{2}{3} \sqrt{(x-1)^{3}}+C
\end{aligned}
$$

(C) $I=\int \frac{d x}{3 \sqrt{x}+1}$, put $\sqrt{x}=u \Rightarrow x=u^{2} \Rightarrow d x=2 u$ du - en

$$
\begin{aligned}
\tau & =\int \frac{2 u}{3 u+1} d u=\frac{2}{3} \int \frac{3 u+1-1}{3 u+1} d u \\
& =\frac{2}{3}\left[\int d u-\frac{1}{3} \int \frac{3 d u}{3 u+1}\right]=\frac{2}{3} u-\frac{1}{3} \ln |u-1|+C \\
& =\frac{2}{3} \sqrt{x}-\frac{2}{9} \ln |3 \sqrt{x}+1|+C
\end{aligned}
$$

(d)

$$
\begin{aligned}
I & =\int \frac{d x}{\sqrt{x+2}-\sqrt{x}} * \frac{\sqrt{x+2}+\sqrt{x}}{\sqrt{x+2}+\sqrt{x}}=\int \frac{\sqrt{x+2}+\sqrt{x}}{x+2-x} d x \\
& =1 / 2 \int \sqrt{x+2} d x+\frac{1}{2} \int \sqrt{x} d x
\end{aligned}
$$

${ }_{S}$ Put $u^{2}=x+2$,

$$
\begin{aligned}
& 2 u d u=d x,-1 / 2 \\
& \frac{1}{2} \int \sqrt{x+2} d x=\frac{1}{2} \int 2 u^{i} c^{1} u=\frac{1}{3} u^{3} \text {. Then } \\
& \tilde{I}=\frac{1}{3}\left[(x+2)^{3 / 2}-x^{3 / 2}\right]+C
\end{aligned}
$$

Find:
(2) $I=\int \frac{5 x^{2} \cdot 20 x+6}{x^{3}+2 x^{2}+x} d x$
(b) $J=\int \frac{x+7}{x^{2}-x-6} d x$
(c) $K=\int \frac{2 x^{3}-4 x-8}{\left(x^{2}-x\right)\left(x^{2}+4\right)} d x$
(a) L. $\int \frac{2 x^{5}-5 x}{\left(x^{2}+2\right)^{2}} d x \quad$ (e) $\mu=\int \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x$
(f) $N=\int \sin ^{2} x \cos ^{2} x d x$

Ans:
(a) Using Partial fraction method, Then

$$
I=\int \frac{5 x^{2}+20 x+6}{x\left(x^{2}+2 x+1\right)} d x=\int \frac{5 x^{2}+20 x+6}{x(x+1)^{2}} d x=\int\left[\frac{A}{x}+\frac{B}{(x+1)}+\frac{C}{(x+1)^{2}}\right] d x
$$

Then, $A(x+1)^{2}+B x(x+1)+C x=5 x^{2}+20 x+6$
put: $x=-1 \Rightarrow-C=5-20+6 \Rightarrow C=9$

$$
\begin{aligned}
& x=0 \Rightarrow A=6 \\
& x=1 \Rightarrow 24+2 B+9=5+20+6 \Rightarrow B=-1, \text { Then }
\end{aligned}
$$

$$
\begin{aligned}
I & =6 \ln |x|-\ln |x+1|+9 \frac{(x+1)^{-1}}{-1}+C \\
& =\ln \left|\frac{x^{6}}{x+1}\right|-\frac{9}{x+1}+C
\end{aligned}
$$

(b) $J=\int \frac{x+7}{x^{2}-x-6} d x$, using Partial fraction, wen.

$$
\begin{aligned}
J & =\int \frac{x+7}{(x+2)(x-3)} d x=\int\left[\frac{A}{x+2}+\frac{B}{x-3}\right] d x-\ln |x+2|+B \ln |x-3|+C \\
& =\ln \left|(x+2)^{A}(x-3)^{B}\right|+C \\
& A(x-3)+B(x+2)=x+7
\end{aligned}
$$

Put $x=3 \Rightarrow 5 B=10 \Rightarrow ?=1$,

$$
x=-2 \Rightarrow-5 A=\Rightarrow A=-1
$$

Then $J=\ln \left|\frac{(x-3)^{2}}{x+1)}\right|+C$
$(C) \quad K=\int \frac{2 x-4 x-8}{(x-1)\left(x^{2}+4\right)} d x$. using Partial fraction, Then

$$
\begin{align*}
& =\int\left[\frac{1}{x}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+4}\right] d x \\
& =\int\left[\frac{A}{x}+\frac{B}{x-1}+\frac{C}{2} \cdot \frac{2 x}{x^{2}+4}+\frac{D}{x^{2}+4}\right] d x \\
& =A \ln |x|+B \ln |x-1|+\frac{C}{2} \ln \left(x^{2}+4\right)+\frac{D}{2} \tan ^{-1}\left(\frac{x}{2}\right)+O \tag{1}
\end{align*}
$$

you should find the constants A, B, C, D,

$$
\begin{aligned}
& A(x-1)\left(x^{2}+4\right)+B x\left(x^{2}+4\right)+(C x+D) x(x-1)=2 x^{3}-4 x-8 \\
& \text { ut } x=0 \Rightarrow
\end{aligned}
$$

Put

$$
\begin{aligned}
& x=0 \Rightarrow-4 A=-8 \Rightarrow A=2 \\
& x=1 \Rightarrow 5 B=-10 \Rightarrow B=-2 \\
& x=2 i \Rightarrow(2 C i+D)(-4-2 i)=-16 i-8 i-8 \\
&(-8 C i,-4 D+4 C(-2 D i)=-8(-24 i) \\
& \therefore 4 C-4 D=-8 \Rightarrow C-D=-2 \Rightarrow b y \text { adding } \\
&-8 C-2 D=-24 \Rightarrow 4 C+D=12 \\
& 5 C=10 \Rightarrow C=2
\end{aligned} D=1
$$

$$
\therefore K=2 \tan ^{-1}\left(\frac{x}{2}\right)+\ln \frac{x^{2}\left(x^{2}+4\right)}{(x-1)^{2}}+C
$$

(d)

$$
\begin{aligned}
& L\left.=\int \frac{2 x^{5}-5 x}{\left(x^{2}+2\right)^{2}} d x=\int \frac{2 x^{5}-5 x}{x^{4}+4 x^{2}+4} d x\right) \\
&=\int 2 x d x-\int \frac{x\left(8 x^{2}+13\right)}{\left(x^{2}+2\right)^{2}} d x+I \quad \frac{x^{4}+4 x^{2}+4 \sqrt{2 x^{5}-5 x}}{2 x^{5}+8 x^{3}+8 x} \\
& I=\int\left(\frac{A x+B}{\left(x^{2}+2\right)}+\frac{C x+D}{\left(x^{2}+2\right)^{2}-13 x}\right) d x \\
&(A x+B)\left(x^{2}+2\right)+(C x+D)=i\left(8 x^{2}+13\right)
\end{aligned}
$$

but $x=0 \Rightarrow 2 B+[-1 \rightarrow(1)$

$$
\begin{aligned}
& x=\sqrt{2} i \Rightarrow \sqrt{2} c i+D=-3 \sqrt{2} i \Rightarrow D=0, C=-3 \\
& x=1 \Rightarrow 2, \text { sub. in }(1) \text {. Then } B=0 \\
I= & \int\left[\frac{8 x}{x^{2}+1}-\frac{x}{\left(x^{2}+2\right)^{2}}\right] d x=4 \int \frac{2 x}{x^{2}+2} d x-\frac{3}{2}\left(\frac{2 x d x}{\left(x^{2}+2\right)^{2}}\right)
\end{aligned}
$$

$$
v=4 \ln \left(x^{2}+2\right)-\frac{3}{2} \int u^{-2} d u
$$

$$
2 x d x=d u \text {, Then }
$$

$4 \ln \left(x^{2}+2\right)+\frac{3}{2} u^{-1}+C$ sub. in l, Then

$$
L=x^{2}-4 \ln \left(x^{2}+2\right)-\frac{3}{2\left(x^{2}+2\right)}+C
$$

(e)

$$
\begin{aligned}
\mu & =\int \frac{x^{2}+1-1}{\left(x^{2}+1\right)^{2}} d x=\int \frac{d x}{x^{2}+1}-\int \frac{d x}{\left(x^{2}+1\right)^{2}} \\
& =\tan ^{-1} x-\int \frac{d x}{\left(x^{2}+1\right)^{2}} \rightarrow \text { But } x=\tan \theta \Rightarrow d x=\sec ^{2} \theta d \theta \\
& =\int \frac{\sec ^{2} \theta}{\sec ^{4} \theta} d \theta=\int \cos ^{2} \theta d \theta=\frac{1}{2} \int(\cos 2 \theta+1) d \theta \\
& =\frac{1}{4} \sin 2 \theta+\theta / 2=\frac{1}{2} \sin \theta \cos \theta+\frac{\theta}{2}+C \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{x^{2}+1}} \cdot \frac{x}{\sqrt{x^{2}+1}}+\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

$$
\therefore M=\frac{1}{2} \tan ^{-1} x-\frac{x}{2\left(x^{2}+1\right)}+C
$$

(f)

$$
\begin{aligned}
N & =\int \sin ^{2} x \cos ^{2} x d x=\frac{1}{4} \int(1-\cos 2 x)(1-\cos 2 x) d x \\
& =\frac{1}{4} \int\left(1-\cos ^{2} 2 x\right) d x=\frac{1}{4} \int \sin ^{2} 2 x d x=\frac{1}{8} \int(1-\cos 4 x) d x \\
& =\frac{1}{8} x-\frac{1}{32} \sin 4 x+C
\end{aligned}
$$

Find: (a) $I=\int \sin ^{2} x \cos ^{5} x d x$.
(d) $L=\int \sec ^{4} 3 x \cdot \tan ^{3} 3 x d x$.
(b) $J=\int \cos ^{4} x d x$
(e) $\mu=\int \csc ^{4} \frac{x}{2} \cdot \cot ^{4} \frac{x}{2} d x$
(c) $k=\int \frac{\tan ^{3} x}{\sqrt{\sec x}} d x$

Ans:
(a) $I=\int \sin ^{2} x \cos x \cdot \cos x d x=\int \sin ^{2} x\left[1-\sin ^{2} x\right]^{2} \cos x d x$

○ut $1=\sin x \Rightarrow d u=\cos x d x$, Then

$$
\begin{aligned}
& \int u^{2}\left(1-u^{2}\right)^{2} d u=\int u^{2}\left(1-2 u^{2}+u^{4}\right) d u \\
= & \int\left[u^{2}-2 u^{4}+u^{6}\right] d u=\frac{1}{3} u^{3}-\frac{2}{5} u^{5}+1 / 7 u^{7}+C \\
= & 1 / 3 \sin ^{3} x-\frac{2}{5} \sin ^{5} x+1 / 7 \sin ^{7} x+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
J & =\int\left(\cos ^{2} x\right)^{2} d x=\int\left[\frac{1}{2}(1+\cos 2 x)\right]^{2} d x \\
& =\frac{1}{4} \int\left[1+2 \cos 2 x+\cos ^{2} 2 x\right] d x=1 / 4 x+\frac{1}{4} \sin 2 x+\frac{1}{8} \int(1+\cos 4 x) d \\
& =\frac{1}{4} x+\frac{1}{4} \sin 2 x+\frac{1}{8} x+\frac{1}{32} \sin 4 x+C \\
& =\frac{3}{8} x+\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C
\end{aligned}
$$

(C) $\int \frac{\tan ^{3} x}{\sqrt{\sec x}} d x=\Rightarrow$ Sut $u=\sec x \Rightarrow d u=\sec x$.tan x ixi then

$$
\begin{aligned}
& \left.=\int \frac{\tan ^{2} x \cdot \tan x}{\sqrt{\sec x}} d x=\int \frac{\left(\sec ^{2} x-1\right) \tan x}{\sqrt{\sec x}} d x\right)-\frac{\left(u^{2}-1\right)}{\sqrt{u}} \cdot \frac{d u}{u} \\
& =\int\left(u^{1 / 2}-u^{-\frac{3}{2}}\right) d u=\frac{2}{3} u^{3 / 2}+2 u^{-\frac{1}{2}}+C-\frac{1}{3} \sec ^{\frac{3}{3} x}+\frac{2}{\sqrt{\sec x}}+C
\end{aligned}
$$

(d)

$$
\begin{aligned}
& =\int \sec ^{4} 3 x \cdot \tan ^{3} 3 x d x=\int \sec ^{2} 33^{3}\left(1 \cdot \tan ^{2} 3 x\right) \tan ^{3} 3 x d x \\
& =\frac{3}{3} \int\left(\tan ^{3} 3 x \cdot \sec ^{2} 3 x+\tan ^{5} 3 x \sec ^{2} 3 x\right) d x \quad \begin{array}{l}
\text { Note } 3 \\
\frac{d}{x}(\tan x x)=2 \sec ^{2} 2 x d x
\end{array}
\end{aligned}
$$

$$
=\left\{\frac{1}{3}\left[\frac{1}{4} \tan ^{4} 3 x+\frac{1}{6} \tan ^{6}\right]+C\right\}
$$

(e)

$$
\begin{aligned}
\mu & =\int \csc ^{2} \frac{x}{2} \cot ^{4} \frac{x}{2} \csc ^{2} \frac{x}{2} \cdot d x=\int\left(1+\cot ^{2} \frac{x}{2}\right) \cot ^{4} \frac{x}{2} \csc ^{2} \frac{x}{2} d x \\
& =-\left[\frac{-1}{2} \cot ^{4} \frac{x}{2} \csc ^{2} \frac{x}{2} d x-2 \int \frac{-1}{2} \cot ^{6} \frac{x}{2} \csc ^{2} \frac{x}{2} d x \quad \text { Note } \frac{d}{d x}(\cot d x)=-\right. \\
& -\left[\frac{1}{5} \cot ^{5} \frac{x}{2}+\frac{1}{7} \cot ^{7} \frac{x}{2}\right]+C
\end{aligned}
$$

Note

$$
\frac{d}{d x}(\cot 2 x)=-a \csc ^{2} 2 x
$$

